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Abstract. A method for constructing explicit exact solutions to nonlinear evolution equations is
further developed. The method is based on consideration of a fixed nonlinear partial differential
equation together with an additional generating condition in the form of a linear high-order
ordinary differential equation. The method is then applied to a free boundary problem based on
the process of precipitant-assisted protein crystal growth.

1. Introduction

In [1, 2] a one-dimensional model for precipitant-assisted protein crystal growth is discussed.
The partial differential equations (PDEs) for this model have the form

up = (Datty)y + py vy = (Dovy)x + v 1)

where forx, r > 0 the functionst = u(z, x) andv = v(z, x) are the protein and precipitant
concentrations in a liquid phase, respectively= () is the velocity of a free interface

at x = 0, and subscripts and x denote differentiation with respect to these variables.
The diffusivities D1 = D;(u, v) and D, = D,(u, v) are assumed to depend explicitly on
the concentrations and v, so system (1) is nonlinear. These two equations are coupled
together at the free interface by the following boundary conditions:

w(us —u) = Diuy u(vy —v) = Davy f(u,v)=0 )

whereu, andv; are the protein and precipitant concentrations in a solid phase(). The
solid-phase concentrations may implicitly depend on time because of the moving interface,
though often they are constant. The first two equations of (2) are classical Stefan conditions
representing mass conservation at the interface; the tfiied 0, is a solubility relation that
guarantees the two liquid-phase constituents are in equilibrium at the interface. In addition
to (1) and (2), one would need far-boundary and initial conditions to determine uniquely
the solution(u, v, ).

It is known that construction of an exact solution for a nonlinear boundary value problem
(BVP) can be very difficult. Certain exact solutions for Stefan-like problems are well known
(see, e.g., [3-6] and their references, and the more recent work in [7]), but generally only
for constant diffusivities. One of the present authors has previously found exact solutions
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for certain nonlinear BVPs associated with heat diffusion [8, 9] (see also the references in
[10]).

In the present paper, we construct wide classes of exact solutions to the nonlinear
free boundary system (1). These exact solutions are constructed using various generating
ordinary differential equations (ODEs) whose definitions are based on the initial conditions
for (1). This approach has previously been applied to obtain solutions to certain nonlinear
evolution equations arising in physics and chemistry [11,12]. It is somewhat analogous
to the method of undetermined coefficients for solving non-homogeneous ODEs with
appropriate non-homogeneities. Throughout this work, the diffusivities are assumed to
be affine-linear:

Di(u,v) = A+ Afu + AJv Da(u, v) = A5 + AJu + A3v 3)

whereA! are constant. While this paper considers only the given two-component system,
the solutions described here can certainly be adapted to similar single-component systems,
or with appropriate assumptions, to other multi-component systems.

In the next section, a generalization of this approach is described for two-component
systems such as (1) and (3) with time-dependent coefficients. In section 3 the approach is
used to construct new solutions for the nonlinear evolution system (1) and (3). In section 4,
we consider under what conditions and for what length of time the solutions derived in
section 3 can satisfy the Stefan conditions of (2). A major result in this section is the
finite-time blow-up of the interface velocity in some of the cases for certain parameter
values.

2. A method for constructing exact solutions for a two-component nonlinear
evolution system

To begin our study of system (1)—(3), let us first concentrate on the PDE (1) and consider
the following linear homogeneolgenerating system

i

ol +at. 0 4ot —o
wolt, U +ea(t, ) (1, ) o =

n

i =0 4)

where ag(t, x), ..., a,(t, x) and Bo(t, x), ..., B.(t,x) are yet-to-be-specified (for the

moment, arbitrary) continuous functions and the variab&econsidered as a parameter. As
we should see, the choice ef and 8; depends on the initial conditions for (1) and (3). It
is well known that the general solution of system (4) has the form

U= go(t)golt, x) + -+ @n_1(t) gm_1(t, x)

dv
Po(t, )V 4 Pa(t, x) =+ -+ Bult, X)

V = Yo(ho(t, x) + -+ + Y1) hy_1(t, x) (5)
where @o(t), e1(t), ..., @n_1() and Yo(t), ¥1(2), ..., ¥,_1(¢) are arbitrary functions and
go(t,x), ..., gn_1(t,x) and ho(t, x), ..., h,_1(t, x) is a fundamental set of solutions for

(4). Note that in many important casg§(t, x), ..., gn_1(t, x) andhg(t, x), ..., h,_1(t, x)
can be expressed explicitly in terms of elementary functions. Moreover, in the case of
time-dependent functiongy(z), . .., «,,(t) and Bo(?), ..., B.(t) a full list of fundamental
sets of solutions can be written for all possible forms of these functions. So system (4) is
an additional generating condition for obtaining many forms of the functiérand V.

Consider relations (5) as an ansatz for the PDEs (1) and (3). Note that this ansatz
containsn+n yet-to-be-determined functiong;(andy;). There is no claim of completeness
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for the fundamental set generated by (4). However, given appropriate choiegegiod j;,

this ansatz may reduce (1) to a quasilinear first-order system of ODEs for the unknown
functions ¢; and v;. Specifically, if one substitutes (5) into system (1) and (3) and
regroups similar terms according to the powers of the functigg and;(r) and their
derivatives, then it may be possible that the coefficients of these terms can be written
as linear combinations of the linearly-independent elements of the fundamental set, and
sufficient conditions for the reduction of this expression to a system of ODEs can be found.
These sulfficient conditions are given by (6)-(13), wr‘@fg(t), R{‘il ), S,:_’].l"‘(t) andT_i-fii‘k(t)

on the right-hand side are independentcadind are defined by the expressions on the left-
hand side. In other words, it is assumed that the expressions on the left-hand side of these
conditions are some linear combinations (with respeat)tof the functionsg; and#; with

coefficientsQ¥, (1), R, (1), $/+* (1) andT/2*(z). So the following conditions are found:

Ji1 iy

Ag8ixx + 181 — 8iv = 81 Oy ©)
)»%hj,xx +uhj o —hj,=hj ngjl @)
A18i8ixx + M (8ix) = gi Rilil ©)
AShihjxx + A5(h;)? = hj, R, 9)
A1(8i&ivvx + 8ir8ivx) + 2A18ix8irx = gizT,»ézl’l i<iy (10)
32y e+ hihsoe) + 2025 iy = W, T2 <y (11)
A3 iy + A3gichj . = gilsfjl-'l (12)
)»ihjgi,xx + )Vigi,xhj,x = hjlsil}yz (13)

where on the right-hand sides of (6)—(13) a summation is assumed frorm0-td over
repeated indices andi,, and from O ton — 1 over j; and j,.

Thus, assuming that it is possible to write the left-hand sides of (6)—(13) as linear
combinations of the fundamental solutions, one obtains the following system ef n)
ODEs:

do; , .

d_tl = Q,-ll,-%'1 + R,-lli (@i)* + 7}1}1%&& + S;ii‘-lgoilel

dys; 2 2 2 .2 .2

dtj = 05, Vi + R (W) + T Vi, + S50, 00 Vi (14)

Again, on the right-hand sides of (14), repeated indices are summed.
An important special case of the above approach may occur whem andw; = ;.
In this casegy; andy; can be multiples of each other, and the general solution of (4) is
U= <P0(l‘)go(t» )C) +--- 4+ (pm—l(t)gm—l(tv )C)
V =1o(t)got, x) + -+ Y1) gn-1(t, x) (15)

and if (15) is used as an ansatz for (1) and (3), then the equations

do; i

o = Qi T R @) + Tien e,

d‘/fi _ N2 RZ 2 Ti,2 16
E - Qiliwil + jli(l/fil) + ilizwilwiz ( )

generate an exact solution in the form (15) for the nonlinear system (1) and (3) provided
the functionsg;,i =0, ..., m — 1, satisfy the conditions
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A8ixx + U&ix — i = 8 O, (1) (17)
A3 + 18ix — i = 81, Q7 (1) (18)
M+ 6: (DA (i gixx + (810D = g RE (1) (19)
(A2 + (02/6;(1)) (g1 8inx + (802 = g R2, (1) (20)
AL+ 6:(OAD) & ginve + A+ 61, (DA2) 80, 81

(201 + O (DA + 0;, (DA 8ix8inx = 81, 12 (1) i <ip (21)

)\2 )»2
(kz + o (t)> 8i8iyxx + < 911(0) 8i18i,xx
2 2
(284 gk P e —w IO i< @2)

where the functions; (t) = w,/go, The system of ODEs (16) is somewhat simpler since it
does not contain thcsm1 or Sm1 terms. The functiong;(¢) in relations (17)—-(22) can be
considered as some known functions for obtaining the functn®, T with corresponding
indices. Generally speaking, even in the cége) = 6; € R, one can obtain non-trivial

solutions of the nonlinear system (1) and (3).

Proposition Any solution of system (14) generates an exact solution in the form (5)
for the nonlinear system (1) and (3), provided the functighsi = 0,...,m — 1, and

h;, j =0,...,n —1, satisfy conditions (6)—(13). Similarly, any solution of system (16)
generates an exact solution in the form (15) for the nonlinear system (1) and (3), provided
the functionsg;, i =0, ..., m — 1, satisfy conditions (17)—(22).

Remark 1 This proposition also holds for the more general cese- A% (#).

Remark 2 The following nonlinear evolution system with arbitrary power nonlinearity
a eR

Y, =[50 + ALY + 23D Z*)Y]x + u(0)Y,

Zi = (Z°Z)x + () Zy (23)
whereY =Y (¢t,x), Z = Z(t, x) are unknown functions, is reduced by the substitution
u=Y v=Z2" a#0 (24)

to the system
= [A5(0) + A1Ou 4+ A3 v]uee + AT(OuF + A5 v + p(0uy
v = A(OVV + A0 /)2 + (), (25)
which has the form (1) and (3).

3. Exact solutions for the nonlinear evolution system
Let us now use the method described to construct several sets of exact solutions of system
(1) and (3) assuming the coefficierits are constant, namely

u, = [(A§ + AMu + A30)ucly + (),
v = [(A§ + AJu + 250, ] + (v, (26)
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We also assume that=m = 3 in the generating ODE system (4):

du d2U d3U

Otl(l)— + Otz(f) dx3 =0

d2v d3v
dx3 =0. (27)

Other choices of values far andm are of course possible, but this choice contains enough
terms to generate interesting solutions without forcing the algebra to be too tedious or
requiring the assistance of a computer. The coefficignis assumed to be zero because
we are seeking practically applicable solutidiisV that can be developed in series with
the first termspo(2), Y¥o(t), respectively. Of course, the suggested method also works well
for the casexg # O.
System (27) generates the following four atze:
() for a1 = ap =0,
U = ¢o(t) + 92(0)x + ¢a(1)x*
V = %o(t) + Y1(0)x + Yra(t)x? (28)
(i) for ¢y = 0 anday = —y,

U = @o(1) + @1(t)x + @2(t) exply (£)x)

V = vo(t) + Yra(t)x + Yr2(r) eXply (£)x) (29)
(iii) for y12(1) = 3(£(af — 4a1)™? — ap) andys # y2,

U = @o(t) + @1(2) explya(t)x) + @2(t) exply2(t)x)

Vo= vo(1) + Y1) explyr(t)x) + y2(r) explyz(t)x) (30)
(iv) finally if 1 = y» = y # 0 in this last case, then

U = @o(t) + @1(1) exply (1)x) + xg2(r) exp(y (1)x)

V = vo(t) + Ya(r) exply (1)x) + x2(1) exply (1)x). (31)

Substituting the functionge = ho = 1, g1 = h1 = x, g2 = ho = x? from ansatz (28)
into relations (6)—(13), one obtains

dv
Otl(t)— +a2(t)

Q1= Q%o = () 030 =245

0% =03 =2u(r) Q3= 23

R, =} Rfo =23 R}, = 6/\1 RZ, = 6A2

Tos' =201 Toy = 215 ' =61 T’ = 613

Sgil =23 Sgol = 512 =25 Szlll =45 ngl =635

Si=M Sy =Sp=2ai  Sp=4f  Sp=ei (32
and

R, =0k =T/ =5+ =0 (33)

115 1251 1251 ij
for all combinations of the indices iy, j, k not listed in (32). Then using (32) and (33),
one finds that system (14) becomes

deo
dr

dos
dr

= (@1 + 2302 + A 1) ? + 24 o2 + Ae1v + 203020

= 2u(t) g2 + BAI1p102 + ArA30an + 203011
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d

% — 6.1(¢2)2 + 611pav

d

% = (V1 + 20302 + A3()? + 203%0v2 + A2p1v1 + 20300y

d
S 2tz + 615unz + Hdenvz + 2enin

dyrz

o = BA2(2)2 + 62201, (34)

System (34) is nonlinear, but fortunately it contains a simpler subsystem:

d

% = 611(02)2 + B3 ko

d

% = 6)5(V2)% + 6X20a1. (35)

There are many cases depending on the coefficiéntsich lead to explicit solutions for
(35) (two are given later). However, it is also possible to describe its solutions generically.
Indeed, there are two cases: (1) both of the links + A3y2 = 0 andi2¢p, + 12y, = 0 lie
in the same two quadrants of the phase plane, or (2) these lines lie in different quadrants.
In either case, there is a quadrant where bidi, < 0 andA3y, < 0, and if the initial
conditions lie in this quadrant, bot#y and+, converge to zero. If the initial conditions lie in
any other quadrant, solutions grow unbounded in time. So for appropriate initial conditions,
it is reasonable to set, = ¥, = 0 (this is also equivalent to assuming= m = 2 in (4)).
One can then write the solution to (34) as

Q1 =1uy Y1 =11
oo =uiM() + (Aiul + )\%vl)ult + Uuop
Yo = viM (1) + (A2uq + A3vp)var + vo. (36)
In (36) and hereinafter
! dm
M) = / w(t) de & o =K M@0 =0 (37)
0

andug, v, u1, v; are arbitrary constants. Sd(¢) is the interface position in the laboratory
reference frame. Substituting functions (36) into ansatz (28), one obtains a four-parameter
family of exact solutions of system (26)

u = ug+ ui[M(t) + Mug + Avp)t 4 x]
v =g+ va[ M) + (WJus + A3v1)t + x]. (38)

Let us assume tha\ti = 0 andy, = 0. In this case it is easy to construct the general
solution of system (34) since subsystem (35) is reduced to the one simple ODE. So the
following functions are found:

po = (1) Yo = —viM(t) + viA3t + vo
1 .
1= 31 [ expy2 / 11 (1) eXp(—¢2) g + vo EXP@2 + 2v1)\§] if 21#0
1
1= —2u,M(t) + 4u2v1)»%t + up if )\.i =0

uz

_—— 39
1+ 6uphit (39)

Y1=-11 P2 =
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whereg(t) is the general solution of the linear first-order ODE
d
d—‘f — 2029 = (1(1) — 23011 + A1(p1)? + 2[A5 + A3 (—viM (1) + vA51 + vo)lgz.  (40)

Substituting functions (39) into ansatz (28), one obtains a five-parameter family of exact
solutions of system (26) at? = 0

us 2
=) + e1()x — ————
u=g)+ et 1+6u2/\irx
v = vo + VISt — v (M (1) + x). (41)

Analogous to how ansatz (28) was used, one can substitute the fungtiand/; from
ansatz (29) into relations (6)—(13), obtaining the corresponding values of the funRﬁgns

0%, Tiﬁk and Sl’jl" However, then one finds the constraipt= v, = 0, leading to the
same solutions as in (38). For this reason, we use relations (17)—(22) to construct solutions
for which ¢,y # 0. In fact, assuming that is constant, and substituting the functions
go=ho=1,g1=h1=x, g2 = hp = explyx) from ansatz (29) into relations (17)—(22),

one obtains values for the functiom; , Qf; and Ti{ik which reduce system (16) to

deo dg1

o p(t)pa p

do2 2/91 1 1

o =7 (Ao + 2190 + A3¥0)@2 + v (1) @2

d d

0 —pyn T =0

dyrz 2072, 42 2

W = (A5 + Afgo + A5¥o) Yo + Yy ()2 (42)
assuming that for some constant R, the following additional constraints are also satisfied:
A3 = aAj A5 = ahrj Ui = —(A1/A D@ 1=1,2 (1) = —21/0d)
A5 = 25+ (1 — a) (Ao + A3t). (43)

The system of ODEs (42) is integrable, and its general solution can be written explicitly.
Specifically, one obtains the following three-parameter family of exact solutions to system
(26),

u=uo+ u[M()+ x] +uzexp(N (@) + yx)

v =vg — (AI/ADua[M(t) + x] — (L]/ADuz €Xp(N (1) + yx) (44)
where the diffusivities are of the form

Di(u,v) = k(l) + )&u + )»%v

Do(u, v) = A§ + (1 — a)(AMug + Advo) + a(Alu + Adv) (45)

u1, up andy are arbitrary constants, amd(r) := y2Dot + y M(t). Note that for these
solutions the diffusivities are constant and equal. Hence one can define

Do := A§ + Mug + Ao = Di(u(x, 1), v(x, 1)) = Da(u(x, 1), v(x,1)). (46)

In the case wherg () is not constant, ansatz (29) also gives an exact solution of system
(26) with the diffusivities given by

D1 = Dy = D(u, v) = A+ Aju + Ajv. (47)
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Indeed, in this casg,, = y’z(dy/dt)glgz,”, so that one can transfer this term from
relations (17) and (18), = 2, into (21) and (22); = 1, i; = 2, respectively. The family
of exact solutions is then

u = @o(t) + urx + @a(t) exply (t)x)

v = Yo(t) + vix — (A3/A3)@a(t) eXpy ()x). (48)

In (48) the functiony = (uz — (AMlus + A3v1)7)~2, and the functionspo, Yo and ¢, are
solutions of

d

% = w1 (1u(r) + Atug + 23vy)

d

% = va(1u(r) + Atug + 21vy)

d

% = y(O[un@) + Mus 4+ Advs + ¥ (1) D(@o, ¥0)]@o. (49)

Note that this system is clearly integrable.

Remark 3 The family of exact solutions (48) has an essential difference from the ones
obtained above or in [11,12]: it contains a non-constatt). This family cannot be
obtained using the approach recently proposed in [13, 14] (note that the basic ideas of the
approach used in [13, 14] are present in [15]).

Next, substituting the functiongy = ho = 1, g1 = h1 = exp(y1x), g2 = ho = exp(yax)
from ansatz (30) into relations (17)—(22) (and y. being constant), one obtains values of
the functionsrf, , O, , Ti{ik and S;}”‘ for which system (16) has the form

(250

d d
% _ o %:0

dr dr
do; .
o s Vi@ + vAASe: + Moo + A3vowi] i=12 (50)

with the additional constraints (43). System (50) is easily integrated, and substituting its
general solution into ansatz (30), one obtains the following four-parameter family of exact
solutions of system (26)
u = o + u1 €xply{ Dot + yr(M (1) + )] + uz €xply; Dot + y2(M (1) + x)]
v = o — (A1/A3)u1 €xplyf Dot + y1(M (1) + x)]

—(1/Az)uz €xply; Dot + y2(M(1) + )] (51)

whereuy, u, y1 andy, are arbitrary constants.
Note that ify, = —y» =iy, y € R, i2 = —1 andu; = up = ¢/2, any complex solution
of the form (51) generates a real oscillatory solution, namely
u = ug + c expl—y2Dot] cos[y (M (1) + x)]
v = vo — (A}/A3)c expl-y? Dot] cosly (M (t) + x)]. (52)
On the other hand, the family of exact solutions (51) admits the following non-trivial
generalization
u = uo + u €xplyZ Dot + yi(M (1) + x)]
v = vo — (h3/Ap)ux €xply¢ Dot + yi(M (1) + x)] (53)

where a summation from 1 te is assumed over the repeated indi¢esindu; andy; are
arbitrary constants.
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Finally, using ansatz (31) and relations (17)—(22), one again obR§jnsQ}; , Ti{;" and
sk for which system (16) has the form

ij
dgo 0 dyo _ 0

dr dr

d

% = w1+ ¢2) + y[45 + 190 + vl (Y g1 + 2¢2)

d

% = yu(t)pr + )/2[)»(13 + K%‘PO + X%%]‘Pz (54)

with the additional constraints (43). One can again obtain a four-parameter family of exact
solutions of system (26):

u = ug + [u + 2uzy Dot + ua(M(t) + x)] exply?Dot + v (M (1) + x)]
v =vo — (A}/AD)[u1 4 2uzy Dot + uz(M (1) + x)] exply? Dot 4 y (M (1) + x)]. (55)

As in the case of solution (51), one can generalize this solution to a family that contains
arbitrary constants; andy,,k=1,...,n.

Remark 4 While the diffusivities are affine-linear in and v, in some cases considered
above the component parameters for the exact solutions (see formulae (44), (51)-(53), (55))
are such that along these exact solutions, the diffusivities are constant in space and time.
On the other hand, the solutions (38), (41) and (48) do not share this property; for these
solutions the diffusivities vary in space and time.

4. Precipitant-assisted protein crystal growth

This final section considers which of the exact solutions given above also satisfy the Stefan
conditions of (2) at the interface and are therefore meaningful in connection with the
precipitant-assisted protein crystal growth model. The equilibrium condifien v) = 0,
however, is not considered here in detail. Regarding the equilibrium conditioyw) =0
at the interfacec = 0, we can find for each solution discussed below th&0), v(0)) is a
root of the linearf with time-independent coefficients. That is, our solutions are special in
that only for certain equilibrium functions do they occur. In each case we can se¢ that
satisfies whatever conditions are necessary to support the special solutions. So in each case,
the solutions will satisfy (1) and (3), the Stefan and equilibrium conditions of (2), along
with the stated initial conditions.

Let us consider the four-parameter family (38). This family requires that the initial
protein and precipitant profiles be linearly ramped:

u(x,0) =ug+ urx v(x, 0) = vg + vyx. (56)

The most significant result in the case of these linearly-ramped initial profiles is the finite-
time blow-up of the interface velocity for certain values of the system parameigrs(

u1, v1, Uy, vg) and the diffusivities. Substituting (38) into the Stefan conditions of (2) and
assuming that, £ 0, vy # 0, one finds that the interface velocity must satisfy

Ug — U
7 [ > ” °_ M) — (A%ul + A%vl)t] = A(l) + )&uo + )»%vo

+ Mg + A v M @) + Iy + vy + A303uy + AZv)]e

Vg — VU
m [ d - O _ M(t) — (WPuy + A%vl)t:| =22+ 22ug + 22vo
1

+(A2uy + A3v)M(8) + [A2(Ajus + Ajvr) + A5(A2ug + Adv)]e (57)
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where againM (¢) := fo’ wder. Although there may be other interesting solutions, probably
the easiest non-trivial one occurs when= —vy, u;—ug = vo—v,, andi} = A2, k = 1,2, 3.

Hence one can again defidg, := D1(ug, vo) = D2(ug, vo). The first of these conditions

(1 = —vq) is reasonable since one would expect that increasing (decreasing) the protein
concentration would correspond to decreasing (increasing) the precipitant concentration.
The other compatibility conditions are what is then required to make the two equations in
(57) redundant. The requirement that the two diffusivities be equalufgrvy) is perhaps

least realistic. These assumptions lead to the following particular case of the solution (38):

= uo +us[M(1) + (A — A3ust + x]

v =vo — us[M(t) + (A\f — Apuat + x]. (58)
Both equations from (57) are then in the form of a nonlinear ODE:

dm

E[A— (M + Bt)] = Do+ BM + Ct (59)

where A, B, andC are the appropriate constant groupings. Definjng= A — (M + Bt)
and noting that;(0) = A, one can integrate (51) to find that

g(t) = [A%? = 2(AB + Do)t — (C — B*)t?]Y/? (60)

and hence that
(AB + Do) + (C — Bt

(A2 — 2(AB + Do)t — (C — B2)12)1/2’
Therefore, depending on the valuesAf B, C and Dy, the velocity may become infinite
in finite time. Based on [1], one would expect thét= (u; — uo)/u; > 0 and Dy > 0,
but the signs ofB and C may be positive or negative. Sinecg = —vi, the grouping
C—B? = ()} —A)H (A1 —u1) + 213(1+u1))u1, and this grouping is positive in many cases
of interest (e.g., example 2 in [2]). Wheh — B? > 0, the maximum time for which this
solution is valid is

tmax = [—ATus — A3vus — A+ ((AMfuy + Agvy + A9 + (us — u0)?(A — A3 (A1(1 — u1)
+r3(L+ u) /un)YA[ur (0 — A AL — ur) + 3L+ u)]n (62)

In other words, in the cas€ — B®> > 0 a blow-up regime is obtained, i.e. the velocity
tends to infinity in finite time [10]. Of course, for other valuesAfB andC the interface
velocity u(t) may be finite for all time.

It turns out that the tripletu, v, u) of the form (58) and (61) does not lose stability for
sufficiently small variations of initial conditions (56). Indeed, consider the bounded domain
G = ((t,x) € [0,T] x [0, X]), whereT < tmax and X is determined from the natural
constraintsy > 0, v > 0 (see (58)).

Let us assume a small variation in (56) of the form

u'(x,0) = ug+ €10+ (u1 + €11)x v'(x, 0) = vo + €20 — (u1 + €21)x (63)

whereesg, €11, €20, €21 are some small parameters, ilg,| < 1. Renamingo + €10 = ug,
Uy + €11 = u’{, Vo + €20 = vg + €0, €21 — €11 = €1, €10+ €20 = €p, One obtains from (63)
(x is omitted below)

uw(t) = —B + (61)

u'(x,0) = ug + urx V'(x,0) = vg + €g — (U1 + €1)x. (64)
Having (38), one can check that the solution

W =ug+ ui[M'(t) + A} — AD)ugt — Aeyt + x]

V' = vo + €0 — (ug + €)[M'(t) + (A] — ADuat — Azert + x] (65)
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satisfies the initial condition (64). So, for sufficiently small non-zerande; the following
estimation is true:
lu' —u| = |usrsert| < lusrieiT| < €
v — v| = |eo + urrjerr — el[M'(t) + (A} — Ad)ust — Aerr + x]|
< leol + lushzerT| + lel[|M'(T)] + |31 — 2p)usT| + AzerT| + | X]] < €
(66)
wheree > 0 is a given small parameter.
Using (65) and the first Stefan conditions in (2), the following ODE ¥fris obtained:
dmMm’
dr
whereA’ = A, B’ = B — AMe1, C' = C — (A} + Ad)Ae; and Dy = Do + Aleo. Therefore,
the constraint

C'—B?=C—- B+ eind2u1(0l —2)) — W+ aD] — 0de)? >0 (68)

[A'— (M'+ B't)] = Dy+ B'M' +C't (67)

is again true for sufficiently smad;. Taking into account (67)—(68) we find
(AB'+ D)) + (C' — Bt

'(t) = —B' 69
W) T (AT 2(AB + Dy — (C' — BHD (69)
for which the estimation
I —ul <e (70)
is true for sufficiently small non-zerg, ande;.
Now the second Stefan condition in (2) can be reduced to the form
M/|:MS_MO+Us_UO_EOi|:O 71)
U Ui+ €1
and then using; — ug = vo — vy one finds
;| €xus — uo) — 60“1]
u =0. 72
|: ug(uy + €1) (72)
Again it is clear that for sufficiently small non-zeeg ande; it is possible to obtain the
estimation
o || €1(us — uo) — €ous
'] |: i| <€ 73
ui(uy + €1) (73)
so that the second Stefan condition is valid up to the gien
Finally, the equilibrium condition for the triplet’, v’, u') has the form
f@',v) :=u’<1—|—ﬂ>+v’—uo<l+ﬂ>—vo—60=0. (74)
ui ui
So the estimation
1) — fu,v)] = |erm ;”0 el <€ (75)
1

is proved again.
Thus the estimations (66), (70) and (75) give the following statement of stability of
solution (58) and (61).
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Statement For any smalk > 0 and positiveC — B2, sufficiently small non-zere, and

€1 exist such that the exact solution (58) and (61) of the Stefan problem (1)—(3) and (56) is
stable in the bounded domadn with respect to the small variations of the initial conditions
(64).

Remark 5 Constraint (68) is very important in the case<0C — B? « 1 since for the
unsufficiently small non-zere; one can obtairC’ — B> < 0 and then estimation (70) will
be wrong. So, in the casé — B2 = 0 (e.g.,A] = AJ) solutions (58) and (61) are unstable
with respect to the small variations of the initial conditions (64).

For the found family of solutions (41) one can consider the following initial profiles:
U= ug+ urx — usx?® V=1vp— U1X (76)

which are a generalization of (56). It turns out that it is also possible to construct the
solutions of the problem (1)-(3) and (76). The form of these solutions again essentially
depends on the diffusivitie®; and D,. Although there are many other solutions, probably
the most interesting non-trivial one occurs whBn= A3+ Alv, D, = 2Dy, A} = —Adv,.

For such diffusivities théime-independent solutiois obtained:

Vo — Vs 2
Uu=u;—us|x - —
v1

V= vg— U1X n= 2)»%1)1. (77)

In other words, the initial profiles of concentrations move with constant velocity. Since the
diffusivities must be non-negative, the maximum space for which solution (77) is valid are
found:

Vo — VU .
: if usvf —us(vo—v5)> >0 )L%vl > 0.

Xmax = v
1

Note also that along the solution (77) the diffusivitiBs and D, are not constant.
Now let us consider the three-parameter family (44). First suppose that the initial protein
and precipitant profiles have exponential terms, but no linear terms:{i-.0):

u(x,0) = ug + uz explyx) v(x,0) = vy — (Ai/)é)ug exp(yx). (78)

In this case, the velocity may again blow up in finite time. Since only a decaying exponential
would be physically reasonable, assume thak 0. Defining againM (1) = féudt,
substituting the protein and precipitant profiles (44) into the Stefan conditions of (2), and
assuming again appropriate compatibility conditions (etg.= —v2, ug — uy; = vy — vo,

etc), so that the Stefan conditions are redundant, one finds that the interface pasition
must satisfy the ODE

dm
J/E[A—exp(ﬁtﬂ/M)] = pexpift +yM) (79)
where nowA = (u; — ug)/up and g := y2Dg > 0. Integrating (79), one finds tha# must
satisfy
AyM =exp(t + yM) — L. (80)

Equation (80) implicitly defines the interface positidfi(r). Consider a plot of both the
right-hand side and left-hand side as a functiomvobfvith ¢ as a parameter. Fot < 0, the
left-hand side is linear with non-negative slope, while the right-hand side is a decreasing
exponential. Hence there is a unique positive soluti6) for all . On the other hand,
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for 0 < A < 1, the slope of the left-hand side is negative, and for a finite range of time, the
left- and right-hand sides cross twice. At the largest such tjfge the left- and right-hand
sides have a common slope at their single point of intersection; hence

1 s - Uy
e = —5 <|n (“ ”°> pra it “0) . 81)
Y Do u ug — up

Looking back at (79), one sees that indge@d) becomes unbounded at= fyax. This
means that in the case® A < 1, a blow-up regime again is obtained. Féor> 1, there
is no solution forr > 0.

Next consider fully the three-parameter family (44) where the initial protein and
precipitant profiles have both exponential and linear terms:

u(x,0) = ug+ urx + uz exp(y x)
v(x,0) = vg — (Ai/k%)ulx - (ki/)\%)uz exp(yx). (82)

In this case the interface behaviour may be rather more complicated. Again assume that
y < 0; under similar compatibility assumptions as before, the interface posifiamow
must satisfy the ODE

dm
V?[A—(MJrEeXIO(ﬁH-VM))] =p1/y + EexpBr +yM))  (83)

where E = u/uq and againg = y2D? > 0 andA = (u, — uo)/u1. Unfortunately, this
equation cannot be solved explicitly; it can, however, be rescaled to eliminate two of the
parameters. Recalling thaty > 0, replace—yM by M, Bt by t, —yA by A and—yE

by E. Then (83) becomes

dm
o 1A~ (M + Eexplt — M)] =1 Eexpt — M). (84)

The behaviour of the interface is then determined through (84) by the relative values or
and E. Numerical computations and a study of (84) indicate that there are three generic
cases.

e For E sufficiently large andA sufficiently small or negativey > 0 for all z. Hence
the solid phase grows for all time.

e For E sufficiently small andA sufficiently large, the interface velocity will again blow
up in finite time.

e For E sufficiently small andd sufficiently small or negative, the interface velocity is
initially negative, but then changes sign as the numerator passes through a zero. After this,
the solid phase grows for all time.

It would be interesting in the future to consider the case of initial conditions (82) more
thoroughly.

Now let us consider the four-parameter family (55); this family requires the following
initial conditions:

u(x,0) = ug + (uy + usx) exp(yx) v(x,0) = vo — (AL/AD) (w1 + uzx) exp(yx)  (85)

where againy < 0. Conditions (85) are a generalization of (78). On substituting this four-
parameter family (55) into the Stefan conditions, one finds that in this Mase:= fo’ wdt
must satisfy

dM dM
(uy — MO)E = y Do + E (u1 4+ 2uzy Dot + u; M (t)) + Dou

x exp(y?Dot + y M(1)). (86)
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This equation is not explicitly integrable fat # up. One could analyse this equation as we
did in the previous case, but it is perhaps more interesting to note thatif—y (u; — ug)
(86) has an explicit exact solutiovf (r) = —y Dot satisfying the initial condition/ (0) = 0.
The corresponding velocity is of course constant —y Dy and Dy > 0.

In the case:; = ug, equation (86) with the initial conditio (0) = O gives a solution
in the implicit form
uz

———(2y2Dot + y M (1)) Y # uz/u1. (87)
yuils—uz

y?Dot + yM(1) = —In |1+

Note that ifus/(yu; — uz) < 0, there is again a maximum time for which this solution is
valid.

Finally, we consider a simplification of the nonlinear system (1) with diffusivities (45)
that is implied by remark 4. If we consider the initial conditions

u(x,0) =uo+wo(x)  v(x,0) = vo— (A1/Ap)wo(x) (88)

wherewg(x) is an arbitrary smooth function, then this system can be reduced to a single
linear equation. Indeed, putting

u(x, 1) = uo + w(x, 1) v(x, 1) = vo — (A/Apw(x, 1) (89)
one reduces problem (1), (45) and (48) to the linear Cauchy problem
w; = Doty + w(x, 0) = wo(x) (90)

where Dy = A3 + Alug + Avo = Di(u(x, 1), v(x, 1)) = Da(u(x, 1), v(x,1)). Itis well

known that the convection heat equation in (90) is reduced to the classical heat equation
by the substitutionr’ = x + M(¢). So it is easy to find the fundamental solution of this
convection heat equation

1 (x + M(t))2i|
G(x,t) = exp| ———|. 91
“0 = Dot p[ 4Dor 1)
Thus the solution of the Cauchy problem (90) is written as the Poisson-type integral, namely
wie ) = [ GG =y Dol dy, (92)

Substituting the right-hand side of (92) into (89) one finds the solution of the initial problem
(1), (45) and (88).

Finally, consider the interface conditions (2). It is easily seen that the solution (89) and
(92) satisfy the following equilibrium condition

f(u,v) := Aju + A3v — Aug — Ajvg = 0. (93)
After substituting (89) into the Stefan conditions of (2), they can be reduced to the form
(g — uo — w) = Dow, Az(ug — uo) = Aj(vo — vy) (94)

where the second condition is the fixed constraint for the given coefficients. Taking into
account formulae (91) and (92), we can represent the first condition of (94) as the nonlinear
integro-differential equation

dmM

1
E(”S_MO_IO(L M))Zz[ll(I,M)—Mlo(l,M)] (95)
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where M (0) = 0 and

1 T (= M@0)?
a0 = VA Dot /_oo eXp[ 4Dot } o) &
Y M(t))z}
Ii(t, M) = Wi fm eXp[ Dot wo(y)y dy. (96)

It is clear that it is impossible to construct an exact solution of this nonlinear
integro-differential equation for an arbitrary smooth functias. The simplest cases
wo = uzeXP(yy), wo = ury + uzexp(yy) and wo = (u1 + uzy)exp(yy) lead to the
examples that have been studied above (see the examples with initial conditions (78), (82)
and (85), respectively). Qualitative analysis of (95) is highly non-trivial and will be done
in another paper.

5. Conclusions

The methods described in section 2 lead to an open-ended set of possible exact solutions for
systems of the form of (1)—(3); our presentation here has only scratched the surface. Larger
values ofm andn (see the generating system (4)) would lead to more complicated initial
conditions and more difficult algebraic problems, but nothing that would be untractable
with modern computational methods. This same approach could also be applied to similar
one-dimensional Stefan-like problems.
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