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Abstract. A method for constructing explicit exact solutions to nonlinear evolution equations is
further developed. The method is based on consideration of a fixed nonlinear partial differential
equation together with an additional generating condition in the form of a linear high-order
ordinary differential equation. The method is then applied to a free boundary problem based on
the process of precipitant-assisted protein crystal growth.

1. Introduction

In [1, 2] a one-dimensional model for precipitant-assisted protein crystal growth is discussed.
The partial differential equations (PDEs) for this model have the form

ut = (D1ux)x + µux vt = (D2vx)x + µvx (1)

where forx, t > 0 the functionsu = u(t, x) andv = v(t, x) are the protein and precipitant
concentrations in a liquid phase, respectively,µ = µ(t) is the velocity of a free interface
at x = 0, and subscriptst and x denote differentiation with respect to these variables.
The diffusivitiesD1 = D1(u, v) andD2 = D2(u, v) are assumed to depend explicitly on
the concentrationsu and v, so system (1) is nonlinear. These two equations are coupled
together at the free interface by the following boundary conditions:

µ(us − u) = D1ux µ(vs − v) = D2vx f (u, v) = 0 (2)

whereus andvs are the protein and precipitant concentrations in a solid phase (x < 0). The
solid-phase concentrations may implicitly depend on time because of the moving interface,
though often they are constant. The first two equations of (2) are classical Stefan conditions
representing mass conservation at the interface; the third,f = 0, is a solubility relation that
guarantees the two liquid-phase constituents are in equilibrium at the interface. In addition
to (1) and (2), one would need far-boundary and initial conditions to determine uniquely
the solution(u, v, µ).

It is known that construction of an exact solution for a nonlinear boundary value problem
(BVP) can be very difficult. Certain exact solutions for Stefan-like problems are well known
(see, e.g., [3–6] and their references, and the more recent work in [7]), but generally only
for constant diffusivities. One of the present authors has previously found exact solutions
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for certain nonlinear BVPs associated with heat diffusion [8, 9] (see also the references in
[10]).

In the present paper, we construct wide classes of exact solutions to the nonlinear
free boundary system (1). These exact solutions are constructed using various generating
ordinary differential equations (ODEs) whose definitions are based on the initial conditions
for (1). This approach has previously been applied to obtain solutions to certain nonlinear
evolution equations arising in physics and chemistry [11, 12]. It is somewhat analogous
to the method of undetermined coefficients for solving non-homogeneous ODEs with
appropriate non-homogeneities. Throughout this work, the diffusivities are assumed to
be affine-linear:

D1(u, v) = λ1
0+ λ1

1u+ λ1
2v D2(u, v) = λ2

0+ λ2
1u+ λ2

2v (3)

whereλki are constant. While this paper considers only the given two-component system,
the solutions described here can certainly be adapted to similar single-component systems,
or with appropriate assumptions, to other multi-component systems.

In the next section, a generalization of this approach is described for two-component
systems such as (1) and (3) with time-dependent coefficients. In section 3 the approach is
used to construct new solutions for the nonlinear evolution system (1) and (3). In section 4,
we consider under what conditions and for what length of time the solutions derived in
section 3 can satisfy the Stefan conditions of (2). A major result in this section is the
finite-time blow-up of the interface velocity in some of the cases for certain parameter
values.

2. A method for constructing exact solutions for a two-component nonlinear
evolution system

To begin our study of system (1)–(3), let us first concentrate on the PDE (1) and consider
the following linear homogeneousgenerating system:

α0(t, x)U + α1(t, x)
dU

dx
+ · · · + αm(t, x)dmU

dxm
= 0

β0(t, x)V + β1(t, x)
dV

dx
+ · · · + βn(t, x)dnV

dxn
= 0 (4)

where α0(t, x), . . . , αm(t, x) and β0(t, x), . . . , βn(t, x) are yet-to-be-specified (for the
moment, arbitrary) continuous functions and the variablet is considered as a parameter. As
we should see, the choice ofαi andβi depends on the initial conditions for (1) and (3). It
is well known that the general solution of system (4) has the form

U = ϕ0(t)g0(t, x)+ · · · + ϕm−1(t)gm−1(t, x)

V = ψ0(t)h0(t, x)+ · · · + ψn−1(t)hn−1(t, x) (5)

whereϕ0(t), ϕ1(t), . . . , ϕm−1(t) andψ0(t), ψ1(t), . . . , ψn−1(t) are arbitrary functions and
g0(t, x), . . . , gm−1(t, x) and h0(t, x), . . . , hn−1(t, x) is a fundamental set of solutions for
(4). Note that in many important casesg0(t, x), . . . , gm−1(t, x) andh0(t, x), . . . , hn−1(t, x)

can be expressed explicitly in terms of elementary functions. Moreover, in the case of
time-dependent functionsα0(t), . . . , αm(t) and β0(t), . . . , βn(t) a full list of fundamental
sets of solutions can be written for all possible forms of these functions. So system (4) is
an additional generating condition for obtaining many forms of the functionsU andV .

Consider relations (5) as an ansatz for the PDEs (1) and (3). Note that this ansatz
containsm+n yet-to-be-determined functions (ϕi andψj ). There is no claim of completeness
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for the fundamental set generated by (4). However, given appropriate choices ofαi andβi ,
this ansatz may reduce (1) to a quasilinear first-order system of ODEs for the unknown
functions ϕi and ψj . Specifically, if one substitutes (5) into system (1) and (3) and
regroups similar terms according to the powers of the functionsϕi(t) andψj(t) and their
derivatives, then it may be possible that the coefficients of these terms can be written
as linear combinations of the linearly-independent elements of the fundamental set, and
sufficient conditions for the reduction of this expression to a system of ODEs can be found.
These sufficient conditions are given by (6)–(13), whereQk

jj1
(t), Rkii1(t), S

j1,k

ij (t) andT j2,k

jj1
(t)

on the right-hand side are independent ofx and are defined by the expressions on the left-
hand side. In other words, it is assumed that the expressions on the left-hand side of these
conditions are some linear combinations (with respect tox) of the functionsgi andhj with
coefficientsQk

jj1
(t), Rkii1(t), S

j1,k

ij (t) andT j2,k

jj1
(t). So the following conditions are found:

λ1
0gi,xx + µgi,x − gi,t = gi1Q1

ii1
(6)

λ2
0hj,xx + µhj,x − hj,t = hj1Q

2
jj1

(7)

λ1
1gigi,xx + λ1

1(gi,x)
2 = gi1R1

ii1
(8)

λ2
2hjhj,xx + λ2

2(hj,x)
2 = hj1R

2
jj1

(9)

λ1
1(gigi1,xx + gi1gi,xx)+ 2λ1

1gi,xgi1,x = gi2T i2,1ii1
i < i1 (10)

λ2
2(hjhj1,xx + hj1hj,xx)+ 2λ2

2hj,xhj1,x = hj2T
j2,2
jj1

j < j1 (11)

λ1
2hjgi,xx + λ1

2gi,xhj,x = gi1Si1,1ij (12)

λ2
1hjgi,xx + λ2

1gi,xhj,x = hj1S
j1,2
ij (13)

where on the right-hand sides of (6)–(13) a summation is assumed from 0 tom − 1 over
repeated indicesi1 and i2, and from 0 ton− 1 overj1 andj2.

Thus, assuming that it is possible to write the left-hand sides of (6)–(13) as linear
combinations of the fundamental solutions, one obtains the following system of(m + n)
ODEs:

dϕi
dt
= Q1

i1i
ϕi1 + R1

i1i
(ϕi1)

2+ T i,1i1i2ϕi1ϕi2 + Si,1i1j1
ϕi1ψj1

dψj
dt
= Q2

j1j
ψj1 + R2

j1j
(ψj1)

2+ T j,2j1j2
ψj1ψj2 + Sj,2i1j1

ϕi1ψj1. (14)

Again, on the right-hand sides of (14), repeated indices are summed.
An important special case of the above approach may occur whenn = m andαi = βi .

In this case,ϕi andψi can be multiples of each other, and the general solution of (4) is

U = ϕ0(t)g0(t, x)+ · · · + ϕm−1(t)gm−1(t, x)

V = ψ0(t)g0(t, x)+ · · · + ψm−1(t)gm−1(t, x) (15)

and if (15) is used as an ansatz for (1) and (3), then the equations

dϕi
dt
= Q1

i1i
ϕi1 + R1

i1i
(ϕi1)

2+ T i,1i1i2ϕi1ϕi2
dψi
dt
= Q2

i1i
ψi1 + R2

i1i
(ψi1)

2+ T i,2i1i2ψi1ψi2 (16)

generate an exact solution in the form (15) for the nonlinear system (1) and (3) provided
the functionsgi, i = 0, . . . , m− 1, satisfy the conditions
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λ1
0gi,xx + µgi,x − gi,t = gi1Q1

ii1
(t) (17)

λ2
0gi,xx + µgi,x − gi,t = gi1Q2

ii1
(t) (18)

(λ1
1+ θi(t)λ1

2)(gigi,xx + (gi,x)2) = gi1R1
ii1
(t) (19)

(λ2
2+ (λ2

1/θi(t)))(gigi,xx + (gi,x)2) = gi1R2
ii1
(t) (20)

(λ1
1+ θi(t)λ1

2)gigi1,xx + (λ1
1+ θi1(t)λ1

2)gi1gi,xx

+(2λ1
1+ θi(t)λ1

2+ θi1(t)λ1
2)gi,xgi1,x = gi2T i2,1ii1

(t) i < i1 (21)(
λ2

2+
λ2

1

θi(t)

)
gigi1,xx +

(
λ2

2+
λ2

1

θi1(t)

)
gi1gi,xx

+
(

2λ2
2+

λ2
1

θi(t)
+ λ2

1

θi1(t)

)
gi,xgi1,x = gi2T i2,2ii1

(t) i < i1 (22)

where the functionsθi(t) = ψi/ϕi . The system of ODEs (16) is somewhat simpler since it
does not contain theSi,1i1j1

or Si,2i1j1
terms. The functionsθi(t) in relations (17)–(22) can be

considered as some known functions for obtaining the functionsQ,R, T with corresponding
indices. Generally speaking, even in the caseθi(t) = θi ∈ R, one can obtain non-trivial
solutions of the nonlinear system (1) and (3).

Proposition. Any solution of system (14) generates an exact solution in the form (5)
for the nonlinear system (1) and (3), provided the functionsgi , i = 0, . . . , m − 1, and
hj , j = 0, . . . , n − 1, satisfy conditions (6)–(13). Similarly, any solution of system (16)
generates an exact solution in the form (15) for the nonlinear system (1) and (3), provided
the functionsgi , i = 0, . . . , m− 1, satisfy conditions (17)–(22).

Remark 1. This proposition also holds for the more general caseλki = λki (t).

Remark 2. The following nonlinear evolution system with arbitrary power nonlinearity
α ∈ R

Yt = [(λ1
0(t)+ λ1

1(t)Y + λ1
2(t)Z

α)Yx ]x + µ(t)Yx
Zt = λ(t)(ZαZx)x + µ(t)Zx (23)

whereY = Y (t, x), Z = Z(t, x) are unknown functions, is reduced by the substitution

u = Y v = Zα α 6= 0 (24)

to the system

ut = [λ1
0(t)+ λ1

1(t)u+ λ1
2(t)v]uxx + λ1

1(t)u
2
x + λ1

2(t)uxvx + µ(t)ux
vt = λ(t)vvxx + (λ(t)/α)v2

x + µ(t)vx (25)

which has the form (1) and (3).

3. Exact solutions for the nonlinear evolution system

Let us now use the method described to construct several sets of exact solutions of system
(1) and (3) assuming the coefficientsλki are constant, namely

ut = [(λ1
0+ λ1

1u+ λ1
2v)ux ]x + µ(t)ux

vt = [(λ2
0+ λ2

1u+ λ2
2v)vx ]x + µ(t)vx. (26)
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We also assume thatn = m = 3 in the generating ODE system (4):

α1(t)
dU

dx
+ α2(t)

d2U

dx2
+ d3U

dx3
= 0

α1(t)
dV

dx
+ α2(t)

d2V

dx2
+ d3V

dx3
= 0. (27)

Other choices of values forn andm are of course possible, but this choice contains enough
terms to generate interesting solutions without forcing the algebra to be too tedious or
requiring the assistance of a computer. The coefficientα0 is assumed to be zero because
we are seeking practically applicable solutionsU,V that can be developed in series with
the first termsϕ0(t), ψ0(t), respectively. Of course, the suggested method also works well
for the caseα0 6= 0.

System (27) generates the following four ansätze:
(i) for α1 = α2 = 0,

U = ϕ0(t)+ ϕ1(t)x + ϕ2(t)x
2

V = ψ0(t)+ ψ1(t)x + ψ2(t)x
2 (28)

(ii) for α1 = 0 andα2 = −γ ,

U = ϕ0(t)+ ϕ1(t)x + ϕ2(t) exp(γ (t)x)

V = ψ0(t)+ ψ1(t)x + ψ2(t) exp(γ (t)x) (29)

(iii) for γ1,2(t) = 1
2(±(α2

2 − 4α1)
1/2− α2) andγ1 6= γ2,

U = ϕ0(t)+ ϕ1(t) exp(γ1(t)x)+ ϕ2(t) exp(γ2(t)x)

V = ψ0(t)+ ψ1(t) exp(γ1(t)x)+ ψ2(t) exp(γ2(t)x) (30)

(iv) finally if γ1 = γ2 = γ 6= 0 in this last case, then

U = ϕ0(t)+ ϕ1(t) exp(γ (t)x)+ xϕ2(t) exp(γ (t)x)

V = ψ0(t)+ ψ1(t) exp(γ (t)x)+ xψ2(t) exp(γ (t)x). (31)

Substituting the functionsg0 = h0 = 1, g1 = h1 = x, g2 = h2 = x2 from ansatz (28)
into relations (6)–(13), one obtains

Q1
10 = Q2

10 = µ(t) Q1
20 = 2λ1

0

Q1
21 = Q2

21 = 2µ(t) Q2
20 = 2λ2

0

R1
10 = λ1

1 R2
10 = λ2

2 R1
22 = 6λ1

1 R2
22 = 6λ2

2

T
0,1

02 = 2λ1
1 T

0,2
02 = 2λ2

2 T
1,1

12 = 6λ1
1 T

1,2
12 = 6λ2

2

S
0,1
11 = λ1

2 S
0,1
20 = S1,1

12 = 2λ1
2 S

1,1
21 = 4λ1

2 S
2,1
22 = 6λ1

2

S
0,2
11 = λ2

1 S
0,2
02 = S1,2

21 = 2λ2
1 S

1,2
12 = 4λ2

1 S
2,2
22 = 6λ2

1 (32)

and

Rkii1 = Qk
ii1
= T j,kii1

= Si1,kij = 0 (33)

for all combinations of the indicesi, i1, j, k not listed in (32). Then using (32) and (33),
one finds that system (14) becomes

dϕ0

dt
= µ(t)ϕ1+ 2λ1

0ϕ2+ λ1
1(ϕ1)

2+ 2λ1
1ϕ0ϕ2+ λ1

2ϕ1ψ1+ 2λ1
2ϕ2ψ0

dϕ1

dt
= 2µ(t)ϕ2+ 6λ1

1ϕ1ϕ2+ 4λ1
2ϕ2ψ1+ 2λ1

2ϕ1ψ2
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dϕ2

dt
= 6λ1

1(ϕ2)
2+ 6λ1

2ϕ2ψ2

dψ0

dt
= µ(t)ψ1+ 2λ2

0ψ2+ λ2
2(ψ1)

2+ 2λ2
2ψ0ψ2+ λ2

1ϕ1ψ1+ 2λ2
1ϕ0ψ2

dψ1

dt
= 2µ(t)ψ2+ 6λ2

2ψ1ψ2+ 4λ2
1ϕ1ψ2+ 2λ2

1ϕ2ψ1

dψ2

dt
= 6λ2

2(ψ2)
2+ 6λ2

1ϕ2ψ2. (34)

System (34) is nonlinear, but fortunately it contains a simpler subsystem:

dϕ2

dt
= 6λ1

1(ϕ2)
2+ 6λ1

2ϕ2ψ2

dψ2

dt
= 6λ2

2(ψ2)
2+ 6λ2

1ϕ2ψ2. (35)

There are many cases depending on the coefficientsλki which lead to explicit solutions for
(35) (two are given later). However, it is also possible to describe its solutions generically.
Indeed, there are two cases: (1) both of the linesλ1

1ϕ2+λ1
2ψ2 = 0 andλ2

1ϕ2+λ2
2ψ2 = 0 lie

in the same two quadrants of the phase plane, or (2) these lines lie in different quadrants.
In either case, there is a quadrant where bothλ1

1ϕ2 < 0 andλ2
2ψ2 < 0, and if the initial

conditions lie in this quadrant, bothϕ2 andψ2 converge to zero. If the initial conditions lie in
any other quadrant, solutions grow unbounded in time. So for appropriate initial conditions,
it is reasonable to setϕ2 ≡ ψ2 ≡ 0 (this is also equivalent to assumingn = m = 2 in (4)).
One can then write the solution to (34) as

ϕ1 = u1 ψ1 = v1

ϕ0 = u1M(t)+ (λ1
1u1+ λ1

2v1)u1t + u0

ψ0 = v1M(t)+ (λ2
1u1+ λ2

2v1)v1t + v0. (36)

In (36) and hereinafter

M(t) :=
∫ t

0
µ(t) dt ⇔ dM

dt
= µ M(0) = 0 (37)

andu0, v0, u1, v1 are arbitrary constants. SoM(t) is the interface position in the laboratory
reference frame. Substituting functions (36) into ansatz (28), one obtains a four-parameter
family of exact solutions of system (26)

u = u0+ u1[M(t)+ (λ1
1u1+ λ1

2v1)t + x]

v = v0+ v1[M(t)+ (λ2
1u1+ λ2

2v1)t + x]. (38)

Let us assume thatλ2
1 = 0 andψ2 = 0. In this case it is easy to construct the general

solution of system (34) since subsystem (35) is reduced to the one simple ODE. So the
following functions are found:

ϕ0 = ϕ(t) ψ0 = −v1M(t)+ v2
1λ

2
2t + v0

ϕ1 = 1

3λ1
1

[
expϕ2

∫
µ(t) exp(−ϕ2) dϕ2+ v0 expϕ2+ 2v1λ

1
2

]
if λ1

1 6= 0

ϕ1 = −2u2M(t)+ 4u2v1λ
1
2t + u0 if λ1

1 = 0

ψ1 = −v1 ϕ2 = − u2

1+ 6u2λ
1
1t

(39)
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whereϕ(t) is the general solution of the linear first-order ODE

dϕ

dt
− 2λ1

1ϕ2ϕ = (µ(t)− λ1
2v1)ϕ1+ λ1

1(ϕ1)
2+ 2[λ1

0+ λ1
2(−v1M(t)+ v2

1λ
2
2t + v0)]ϕ2. (40)

Substituting functions (39) into ansatz (28), one obtains a five-parameter family of exact
solutions of system (26) atλ2

1 = 0

u = ϕ(t)+ ϕ1(t)x − u2

1+ 6u2λ
1
1t
x2

v = v0+ v2
1λ

2
2t − v1(M(t)+ x). (41)

Analogous to how ansatz (28) was used, one can substitute the functionsgi andhi from
ansatz (29) into relations (6)–(13), obtaining the corresponding values of the functionsRkii1,

Qk
ii1

, T j,kii1
andSi1,kij . However, then one finds the constraintϕ2 = ψ2 = 0, leading to the

same solutions as in (38). For this reason, we use relations (17)–(22) to construct solutions
for which ϕ2ψ2 6= 0. In fact, assuming thatγ is constant, and substituting the functions
g0 = h0 = 1, g1 = h1 = x, g2 = h2 = exp(γ x) from ansatz (29) into relations (17)–(22),
one obtains values for the functionsRkii1, Qk

ii1
andT j,kii1

which reduce system (16) to

dϕ0

dt
= µ(t)ϕ1

dϕ1

dt
= 0

dϕ2

dt
= γ 2(λ1

0+ λ1
1ϕ0+ λ1

2ψ0)ϕ2+ γµ(t)ϕ2

dψ0

dt
= µ(t)ψ1

dψ1

dt
= 0

dψ2

dt
= γ 2(λ2

0+ λ2
1ϕ0+ λ2

2ψ0)ψ2+ γµ(t)ψ2 (42)

assuming that for some constantα ∈ R, the following additional constraints are also satisfied:

λ2
1 = αλ1

1 λ2
2 = αλ1

2 ψl = −(λ1
1/λ

1
2)ϕl l = 1, 2 (θl(t) ≡ −λ1

1/λ
1
2)

λ2
0 = λ1

0+ (1− α)(λ1
1ϕ0+ λ1

2ψ0). (43)

The system of ODEs (42) is integrable, and its general solution can be written explicitly.
Specifically, one obtains the following three-parameter family of exact solutions to system
(26),

u = u0+ u1[M(t)+ x] + u2 exp(N(t)+ γ x)
v = v0− (λ1

1/λ
1
2)u1[M(t)+ x] − (λ1

1/λ
1
2)u2 exp(N(t)+ γ x) (44)

where the diffusivities are of the form

D1(u, v) = λ1
0+ λ1

1u+ λ1
2v

D2(u, v) = λ1
0+ (1− α)(λ1

1u0+ λ1
2v0)+ α(λ1

1u+ λ1
2v) (45)

u1, u2 and γ are arbitrary constants, andN(t) := γ 2D0t + γM(t). Note that for these
solutions the diffusivities are constant and equal. Hence one can define

D0 := λ1
0+ λ1

1u0+ λ1
2v0 ≡ D1(u(x, t), v(x, t)) = D2(u(x, t), v(x, t)). (46)

In the case whereγ (t) is not constant, ansatz (29) also gives an exact solution of system
(26) with the diffusivities given by

D1 = D2 = D(u, v) ≡ λ1
0+ λ1

1u+ λ1
2v. (47)
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Indeed, in this caseg2,t = γ−2(dγ /dt)g1g2,xx , so that one can transfer this term from
relations (17) and (18),i = 2, into (21) and (22),i = 1, i1 = 2, respectively. The family
of exact solutions is then

u = ϕ0(t)+ u1x + ϕ2(t) exp(γ (t)x)

v = ψ0(t)+ v1x − (λ1
1/λ

1
2)ϕ2(t) exp(γ (t)x). (48)

In (48) the functionγ = (u2 − (λ1
1u1 + λ1

2v1)t)
−1, and the functionsϕ0, ψ0 and ϕ2 are

solutions of
dϕ0

dt
= u1(µ(t)+ λ1

1u1+ λ1
2v1)

dψ0

dt
= v1(µ(t)+ λ1

1u1+ λ1
2v1)

dϕ2

dt
= γ (t)[µ(t)+ λ1

1u1+ λ1
2v1+ γ (t)D(ϕ0, ψ0)]ϕ2. (49)

Note that this system is clearly integrable.

Remark 3. The family of exact solutions (48) has an essential difference from the ones
obtained above or in [11, 12]: it contains a non-constantγ (t). This family cannot be
obtained using the approach recently proposed in [13, 14] (note that the basic ideas of the
approach used in [13, 14] are present in [15]).

Next, substituting the functionsg0 = h0 = 1, g1 = h1 = exp(γ1x), g2 = h2 = exp(γ2x)

from ansatz (30) into relations (17)–(22) (γ1 andγ2 being constant), one obtains values of
the functionsRkii1, Qk

ii1
, T j,kii1

andSi1,kij for which system (16) has the form

dϕ0

dt
= 0

dψ0

dt
= 0

dϕi
dt
= γiµ(t)ϕi + γ 2

i [λ1
0ϕi + λ1

1ϕ0ϕi + λ1
2ψ0ϕi ] i = 1, 2 (50)

with the additional constraints (43). System (50) is easily integrated, and substituting its
general solution into ansatz (30), one obtains the following four-parameter family of exact
solutions of system (26)

u = u0+ u1 exp[γ 2
1D0t + γ1(M(t)+ x)] + u2 exp[γ 2

2D0t + γ2(M(t)+ x)]
v = v0− (λ1

1/λ
1
2)u1 exp[γ 2

1D0t + γ1(M(t)+ x)]
−(λ1

1/λ
1
2)u2 exp[γ 2

2D0t + γ2(M(t)+ x)] (51)

whereu1, u2, γ1 andγ2 are arbitrary constants.
Note that ifγ1 = −γ2 = iγ , γ ∈ R, i2 = −1 andu1 = u2 = c/2, any complex solution

of the form (51) generates a real oscillatory solution, namely

u = u0+ c exp[−γ 2D0t ] cos[γ (M(t)+ x)]
v = v0− (λ1

1/λ
1
2)c exp[−γ 2D0t ] cos[γ (M(t)+ x)]. (52)

On the other hand, the family of exact solutions (51) admits the following non-trivial
generalization

u = u0+ uk exp[γ 2
k D0t + γk(M(t)+ x)]

v = v0− (λ1
1/λ

1
2)uk exp[γ 2

k D0t + γk(M(t)+ x)] (53)

where a summation from 1 ton is assumed over the repeated indicesk, anduk andγk are
arbitrary constants.
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Finally, using ansatz (31) and relations (17)–(22), one again obtainsRkii1, Qk
ii1

, T j,kii1
and

S
i1,k
ij , for which system (16) has the form

dϕ0

dt
= 0

dψ0

dt
= 0

dϕ1

dt
= µ(t)(γ ϕ1+ ϕ2)+ γ [λ1

0+ λ1
1ϕ0+ λ1

2ψ0](γ ϕ1+ 2ϕ2)

dϕ2

dt
= γµ(t)ϕ2+ γ 2[λ1

0+ λ1
1ϕ0+ λ1

2ψ0]ϕ2 (54)

with the additional constraints (43). One can again obtain a four-parameter family of exact
solutions of system (26):

u = u0+ [u1+ 2u2γD0t + u2(M(t)+ x)] exp[γ 2D0t + γ (M(t)+ x)]
v = v0− (λ1

1/λ
1
2)[u1+ 2u2γD0t + u2(M(t)+ x)] exp[γ 2D0t + γ (M(t)+ x)]. (55)

As in the case of solution (51), one can generalize this solution to a family that contains
arbitrary constantsuk andγk, k = 1, . . . , n.

Remark 4. While the diffusivities are affine-linear inu and v, in some cases considered
above the component parameters for the exact solutions (see formulae (44), (51)–(53), (55))
are such that along these exact solutions, the diffusivities are constant in space and time.
On the other hand, the solutions (38), (41) and (48) do not share this property; for these
solutions the diffusivities vary in space and time.

4. Precipitant-assisted protein crystal growth

This final section considers which of the exact solutions given above also satisfy the Stefan
conditions of (2) at the interface and are therefore meaningful in connection with the
precipitant-assisted protein crystal growth model. The equilibrium conditionf (u, v) = 0,
however, is not considered here in detail. Regarding the equilibrium conditionf (u, v) = 0
at the interfacex = 0, we can find for each solution discussed below that(u(0), v(0)) is a
root of the linearf with time-independent coefficients. That is, our solutions are special in
that only for certain equilibrium functions do they occur. In each case we can see thatf

satisfies whatever conditions are necessary to support the special solutions. So in each case,
the solutions will satisfy (1) and (3), the Stefan and equilibrium conditions of (2), along
with the stated initial conditions.

Let us consider the four-parameter family (38). This family requires that the initial
protein and precipitant profiles be linearly ramped:

u(x, 0) = u0+ u1x v(x, 0) = v0+ v1x. (56)

The most significant result in the case of these linearly-ramped initial profiles is the finite-
time blow-up of the interface velocity for certain values of the system parameters (u0, v0,
u1, v1, us , vs) and the diffusivities. Substituting (38) into the Stefan conditions of (2) and
assuming thatu1 6= 0, v1 6= 0, one finds that the interface velocityµ must satisfy

µ

[
us − u0

u1
−M(t)− (λ1

1u1+ λ1
2v1)t

]
= λ1

0+ λ1
1u0+ λ1

2v0

+(λ1
1u1+ λ1

2v1)M(t)+ [λ1
1(λ

1
1u1+ λ1

2v1)+ λ1
2(λ

2
1u1+ λ2

2v1)]t

µ

[
vs − v0

v1
−M(t)− (λ2

1u1+ λ2
2v1)t

]
= λ2

0+ λ2
1u0+ λ2

2v0

+(λ2
1u1+ λ2

2v1)M(t)+ [λ2
1(λ

1
1u1+ λ1

2v1)+ λ2
2(λ

2
1u1+ λ2

2v1)]t (57)



3824 R M Cherniha and J D Fehribach

where againM(t) := ∫ t0 µ dt . Although there may be other interesting solutions, probably
the easiest non-trivial one occurs whenu1 = −v1, us−u0 = v0−vs , andλ1

k = λ2
k, k = 1, 2, 3.

Hence one can again defineD0 := D1(u0, v0) = D2(u0, v0). The first of these conditions
(u1 = −v1) is reasonable since one would expect that increasing (decreasing) the protein
concentration would correspond to decreasing (increasing) the precipitant concentration.
The other compatibility conditions are what is then required to make the two equations in
(57) redundant. The requirement that the two diffusivities be equal for(u0, v0) is perhaps
least realistic. These assumptions lead to the following particular case of the solution (38):

u = u0+ u1[M(t)+ (λ1
1− λ1

2)u1t + x]

v = v0− u1[M(t)+ (λ1
1− λ1

2)u1t + x]. (58)

Both equations from (57) are then in the form of a nonlinear ODE:

dM

dt
[A− (M + Bt)] = D0+ BM + Ct (59)

whereA, B, andC are the appropriate constant groupings. Definingq := A − (M + Bt)
and noting thatq(0) = A, one can integrate (51) to find that

q(t) = [A2− 2(AB +D0)t − (C − B2)t2]1/2 (60)

and hence that

µ(t) = −B + (AB +D0)+ (C − B2)t

(A2− 2(AB +D0)t − (C − B2)t2)1/2
. (61)

Therefore, depending on the values ofA, B, C andD0, the velocity may become infinite
in finite time. Based on [1], one would expect thatA = (us − u0)/u1 > 0 andD0 > 0,
but the signs ofB and C may be positive or negative. Sinceu1 = −v1, the grouping
C−B2 = (λ1

1−λ1
2)(λ

1
1(1−u1)+λ1

2(1+u1))u1, and this grouping is positive in many cases
of interest (e.g., example 2 in [2]). WhenC − B2 > 0, the maximum time for which this
solution is valid is

tmax= [−λ1
1us − λ1

2vs − λ1
0+ ((λ1

1us + λ1
2vs + λ1

0)
2+ (us − u0)

2(λ1
1− λ1

2)(λ
1
1(1− u1)

+λ1
2(1+ u1))/u1)

1/2][u1(λ
1
1− λ1

2)(λ
1
1(1− u1)+ λ1

2(1+ u1))]
−1. (62)

In other words, in the caseC − B2 > 0 a blow-up regime is obtained, i.e. the velocity
tends to infinity in finite time [10]. Of course, for other values ofA, B andC the interface
velocity µ(t) may be finite for all time.

It turns out that the triplet(u, v, µ) of the form (58) and (61) does not lose stability for
sufficiently small variations of initial conditions (56). Indeed, consider the bounded domain
G = 〈(t, x) ∈ [0, T ] × [0, X]〉, whereT < tmax andX is determined from the natural
constraintsu > 0, v > 0 (see (58)).

Let us assume a small variation in (56) of the form

u′(x, 0) = u0+ ε10+ (u1+ ε11)x v′(x, 0) = v0+ ε20− (u1+ ε21)x (63)

whereε10, ε11, ε20, ε21 are some small parameters, i.e.|εij | � 1. Renamingu0+ ε10 = u∗0,
u1 + ε11 = u∗1, v0 + ε20 = v∗0 + ε0, ε21− ε11 = ε1, ε10+ ε20 = ε0, one obtains from (63)
(∗ is omitted below)

u′(x, 0) = u0+ u1x v′(x, 0) = v0+ ε0− (u1+ ε1)x. (64)

Having (38), one can check that the solution

u′ = u0+ u1[M ′(t)+ (λ1
1− λ1

2)u1t − λ1
2ε1t + x]

v′ = v0+ ε0− (u1+ ε1)[M
′(t)+ (λ1

1− λ1
2)u1t − λ1

2ε1t + x] (65)
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satisfies the initial condition (64). So, for sufficiently small non-zeroε0 andε1 the following
estimation is true:

|u′ − u| = |u1λ
1
2ε1t | 6 |u1λ

1
2ε1T | < ε

|v′ − v| = |ε0+ u1λ
1
2ε1t − ε1[M ′(t)+ (λ1

1− λ1
2)u1t − λ1

2ε1t + x]|
6 |ε0| + |u1λ

1
2ε1T | + |ε1|[|M ′(T )| + |(λ1

1− λ1
2)u1T | + |λ1

2ε1T | + |X|] < ε

(66)

whereε > 0 is a given small parameter.
Using (65) and the first Stefan conditions in (2), the following ODE forM ′ is obtained:

dM ′

dt
[A′ − (M ′ + B ′t)] = D′0+ B ′M ′ + C ′t (67)

whereA′ = A, B ′ = B − λ1
2ε1, C ′ = C − (λ1

1 + λ1
2)λ

1
2ε1 andD′0 = D0 + λ1

2ε0. Therefore,
the constraint

C ′ − B ′2 = C − B2+ ε1λ
1
2[2u1(λ

1
1− λ1

2)− (λ1
1+ λ1

2)] − (λ1
2ε1)

2 > 0 (68)

is again true for sufficiently smallε1. Taking into account (67)–(68) we find

µ′(t) = −B ′ + (AB ′ +D′0)+ (C ′ − B ′2)t
(A2− 2(AB ′ +D′0)t − (C ′ − B ′2)t2)1/2

(69)

for which the estimation

|µ′ − µ| < ε (70)

is true for sufficiently small non-zeroε0 andε1.
Now the second Stefan condition in (2) can be reduced to the form

µ′
[
us − u0

u1
+ vs − v0− ε0

u1+ ε1

]
= 0 (71)

and then usingus − u0 = v0− vs one finds

µ′
[
ε1(us − u0)− ε0u1

u1(u1+ ε1)

]
= 0. (72)

Again it is clear that for sufficiently small non-zeroε0 and ε1 it is possible to obtain the
estimation

|µ′|
∣∣∣∣[ε1(us − u0)− ε0u1

u1(u1+ ε1)

]∣∣∣∣ < ε (73)

so that the second Stefan condition is valid up to the givenε.
Finally, the equilibrium condition for the triplet(u′, v′, µ′) has the form

f (u′, v′) := u′
(

1+ ε1

u1

)
+ v′ − u0

(
1+ ε1

u1

)
− v0− ε0 = 0. (74)

So the estimation

|f (u′, v′)− f (u, v)| =
∣∣∣∣ε1
u′ − u0

u1
− ε0

∣∣∣∣ < ε (75)

is proved again.
Thus the estimations (66), (70) and (75) give the following statement of stability of

solution (58) and (61).
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Statement. For any smallε > 0 and positiveC − B2, sufficiently small non-zeroε0 and
ε1 exist such that the exact solution (58) and (61) of the Stefan problem (1)–(3) and (56) is
stable in the bounded domainG with respect to the small variations of the initial conditions
(64).

Remark 5. Constraint (68) is very important in the case 0< C − B2 � 1 since for the
unsufficiently small non-zeroε1 one can obtainC ′ − B ′2 < 0 and then estimation (70) will
be wrong. So, in the caseC − B2 = 0 (e.g.,λ1

1 = λ1
2) solutions (58) and (61) are unstable

with respect to the small variations of the initial conditions (64).

For the found family of solutions (41) one can consider the following initial profiles:

u = u0+ u1x − u2x
2 v = v0− v1x (76)

which are a generalization of (56). It turns out that it is also possible to construct the
solutions of the problem (1)–(3) and (76). The form of these solutions again essentially
depends on the diffusivitiesD1 andD2. Although there are many other solutions, probably
the most interesting non-trivial one occurs whenD1 = λ1

0+ λ1
2v, D2 = 2D1, λ1

0 = −λ1
2vs .

For such diffusivities thetime-independent solutionis obtained:

u = us − u2

(
x − v0− vs

v1

)2

v = v0− v1x µ = 2λ1
2v1. (77)

In other words, the initial profiles of concentrations move with constant velocity. Since the
diffusivities must be non-negative, the maximum space for which solution (77) is valid are
found:

xmax= v0− vs
v1

if usv
2
1 − u2(v0− vs)2 > 0 λ1

2v1 > 0.

Note also that along the solution (77) the diffusivitiesD1 andD2 are not constant.
Now let us consider the three-parameter family (44). First suppose that the initial protein

and precipitant profiles have exponential terms, but no linear terms (i.e.u1 = 0):

u(x, 0) = u0+ u2 exp(γ x) v(x, 0) = v0− (λ1
1/λ

1
2)u2 exp(γ x). (78)

In this case, the velocity may again blow up in finite time. Since only a decaying exponential
would be physically reasonable, assume thatγ < 0. Defining againM(t) := ∫ t

0 µ dt ,
substituting the protein and precipitant profiles (44) into the Stefan conditions of (2), and
assuming again appropriate compatibility conditions (e.g.,u2 = −v2, u0 − us = vs − v0,
etc), so that the Stefan conditions are redundant, one finds that the interface positionM

must satisfy the ODE

γ
dM

dt
[A− exp(βt + γM)] = β exp(βt + γM) (79)

where nowA = (us − u0)/u2 andβ := γ 2D0 > 0. Integrating (79), one finds thatM must
satisfy

AγM = exp(βt + γM)− 1. (80)

Equation (80) implicitly defines the interface positionM(t). Consider a plot of both the
right-hand side and left-hand side as a function ofM with t as a parameter. ForA 6 0, the
left-hand side is linear with non-negative slope, while the right-hand side is a decreasing
exponential. Hence there is a unique positive solutionM(t) for all t . On the other hand,
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for 0< A < 1, the slope of the left-hand side is negative, and for a finite range of time, the
left- and right-hand sides cross twice. At the largest such timetmax, the left- and right-hand
sides have a common slope at their single point of intersection; hence

tmax= 1

γ 2D0

(
ln

(
us − u0

u2

)
+ u2− us + u0

us − u0

)
. (81)

Looking back at (79), one sees that indeedµ(t) becomes unbounded att = tmax. This
means that in the case 0< A < 1, a blow-up regime again is obtained. ForA > 1, there
is no solution fort > 0.

Next consider fully the three-parameter family (44) where the initial protein and
precipitant profiles have both exponential and linear terms:

u(x, 0) = u0+ u1x + u2 exp(γ x)
v(x, 0) = v0− (λ1

1/λ
1
2)u1x − (λ1

1/λ
1
2)u2 exp(γ x). (82)

In this case the interface behaviour may be rather more complicated. Again assume that
γ < 0; under similar compatibility assumptions as before, the interface positionM now
must satisfy the ODE

γ
dM

dt
[A− (M + E exp(βt + γM))] = β(1/γ + E exp(βt + γM)) (83)

whereE = u2/u1 and againβ = γ 2D0
1 > 0 andA = (us − u0)/u1. Unfortunately, this

equation cannot be solved explicitly; it can, however, be rescaled to eliminate two of the
parameters. Recalling that−γ > 0, replace−γM by M, βt by t , −γA by A and−γE
by E. Then (83) becomes

dM

dt
[A− (M + E exp(t −M))] = 1− E exp(t −M). (84)

The behaviour of the interface is then determined through (84) by the relative values orA

andE. Numerical computations and a study of (84) indicate that there are three generic
cases.
• For E sufficiently large andA sufficiently small or negative,µ > 0 for all t . Hence

the solid phase grows for all time.
• ForE sufficiently small andA sufficiently large, the interface velocity will again blow

up in finite time.
• ForE sufficiently small andA sufficiently small or negative, the interface velocity is

initially negative, but then changes sign as the numerator passes through a zero. After this,
the solid phase grows for all time.

It would be interesting in the future to consider the case of initial conditions (82) more
thoroughly.

Now let us consider the four-parameter family (55); this family requires the following
initial conditions:

u(x, 0) = u0+ (u1+ u2x) exp(γ x) v(x, 0) = v0− (λ1
1/λ

1
2)(u1+ u2x) exp(γ x) (85)

where againγ < 0. Conditions (85) are a generalization of (78). On substituting this four-
parameter family (55) into the Stefan conditions, one finds that in this caseM(t) := ∫ t0 µ dt
must satisfy

(us − u0)
dM

dt
=
[(
γD0+ dM

dt

)
(u1+ 2u2γD0t + u2M(t))+D0u2

]
× exp(γ 2D0t + γM(t)). (86)
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This equation is not explicitly integrable forus 6= u0. One could analyse this equation as we
did in the previous case, but it is perhaps more interesting to note that ifu2 = −γ (us −u0)

(86) has an explicit exact solutionM(t) = −γD0t satisfying the initial conditionM(0) = 0.
The corresponding velocity is of course constantµ = −γD0 andD0 > 0.

In the caseus = u0, equation (86) with the initial conditionM(0) = 0 gives a solution
in the implicit form

γ 2D0t + γM(t) = − ln

∣∣∣∣1+ u2

γ u1− u2
(2γ 2D0t + γM(t))

∣∣∣∣ γ 6= u2/u1. (87)

Note that ifu2/(γ u1 − u2) < 0, there is again a maximum time for which this solution is
valid.

Finally, we consider a simplification of the nonlinear system (1) with diffusivities (45)
that is implied by remark 4. If we consider the initial conditions

u(x, 0) = u0+ w0(x) v(x, 0) = v0− (λ1
1/λ

1
2)w0(x) (88)

wherew0(x) is an arbitrary smooth function, then this system can be reduced to a single
linear equation. Indeed, putting

u(x, t) = u0+ w(x, t) v(x, t) = v0− (λ1
1/λ

1
2)w(x, t) (89)

one reduces problem (1), (45) and (48) to the linear Cauchy problem

wt = D0uxx + µwx w(x, 0) = w0(x) (90)

whereD0 := λ1
0 + λ1

1u0 + λ1
2v0 ≡ D1(u(x, t), v(x, t)) = D2(u(x, t), v(x, t)). It is well

known that the convection heat equation in (90) is reduced to the classical heat equation
by the substitutionx ′ = x +M(t). So it is easy to find the fundamental solution of this
convection heat equation

G(x, t) = 1√
4πD0t

exp

[
− (x +M(t))

2

4D0t

]
. (91)

Thus the solution of the Cauchy problem (90) is written as the Poisson-type integral, namely

w(x, t) =
∫ ∞
−∞

G(x − y, t)w0(y) dy. (92)

Substituting the right-hand side of (92) into (89) one finds the solution of the initial problem
(1), (45) and (88).

Finally, consider the interface conditions (2). It is easily seen that the solution (89) and
(92) satisfy the following equilibrium condition

f (u, v) := λ1
1u+ λ1

2v − λ1
1u0− λ1

2v0 = 0. (93)

After substituting (89) into the Stefan conditions of (2), they can be reduced to the form

µ(us − u0− w) = D0wx λ1
1(us − u0) = λ1

2(v0− vs) (94)

where the second condition is the fixed constraint for the given coefficients. Taking into
account formulae (91) and (92), we can represent the first condition of (94) as the nonlinear
integro-differential equation

dM

dt
(us − u0− I0(t,M)) = 1

2t
[I1(t,M)−MI0(t,M)] (95)
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whereM(0) = 0 and

I0(t,M) = 1√
4πD0t

∫ ∞
−∞

exp

[
− (y −M(t))

2

4D0t

]
w0(y) dy

I1(t,M) = 1√
4πD0t

∫ ∞
−∞

exp

[
− (y −M(t))

2

4D0t

]
w0(y)y dy. (96)

It is clear that it is impossible to construct an exact solution of this nonlinear
integro-differential equation for an arbitrary smooth functionw0. The simplest cases
w0 = u2 exp(γy), w0 = u1y + u2 exp(γy) and w0 = (u1 + u2y) exp(γy) lead to the
examples that have been studied above (see the examples with initial conditions (78), (82)
and (85), respectively). Qualitative analysis of (95) is highly non-trivial and will be done
in another paper.

5. Conclusions

The methods described in section 2 lead to an open-ended set of possible exact solutions for
systems of the form of (1)–(3); our presentation here has only scratched the surface. Larger
values ofm andn (see the generating system (4)) would lead to more complicated initial
conditions and more difficult algebraic problems, but nothing that would be untractable
with modern computational methods. This same approach could also be applied to similar
one-dimensional Stefan-like problems.
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